Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 7 de 7
Filtre
1.
Front Immunol ; 14: 1166589, 2023.
Article Dans Anglais | MEDLINE | ID: covidwho-2321884

Résumé

Since early 2022, various Omicron variants have dominated the SARS-CoV-2 pandemic in most countries. All Omicron variants are B-cell immune escape variants, and antibodies induced by first-generation COVID-19 vaccines or by infection with earlier SARS-CoV-2 variants largely fail to protect individuals from Omicron infection. In the present study, we investigated the effect of Omicron infections in triple-vaccinated and in antigen-naive individuals. We show that Omicron breakthrough infections occurring 2-3.5 months after the third vaccination restore B-cell and T-cell immune responses to levels similar to or higher than those measured 14 days after the third vaccination, including the induction of Omicron-neutralizing antibodies. Antibody responses in breakthrough infection derived mostly from cross-reacting B cells, initially induced by vaccination, whereas Omicron infections in antigen-naive individuals primarily generated B cells binding to the Omicron but not the Wuhan spike protein. Although antigen-naive individuals mounted considerable T-cell responses after infection, B-cell responses were low, and neutralizing antibodies were frequently below the limit of detection. In summary, the detection of Omicron-associated B-cell responses in primed and in antigen-naive individuals supports the application of Omicron-adapted COVID-19 vaccines, but calls into question their suitability if they also contain/encode antigens of the original Wuhan virus.


Sujets)
COVID-19 , Humains , Vaccins contre la COVID-19 , SARS-CoV-2 , Anticorps neutralisants ,
2.
Nat Commun ; 13(1): 4872, 2022 08 18.
Article Dans Anglais | MEDLINE | ID: covidwho-1991596

Résumé

Heterologous prime/boost vaccination with a vector-based approach (ChAdOx-1nCov-19, ChAd) followed by an mRNA vaccine (e.g. BNT162b2, BNT) has been reported to be superior in inducing protective immunity compared to repeated application of the same vaccine. However, data comparing immunity decline after homologous and heterologous vaccination as well as effects of a third vaccine application after heterologous ChAd/BNT vaccination are lacking. Here we show longitudinal monitoring of ChAd/ChAd (n = 41) and ChAd/BNT (n = 88) vaccinated individuals and the impact of a third vaccination with BNT. The third vaccination greatly augments waning anti-spike IgG but results in only moderate increase in spike-specific CD4 + and CD8 + T cell numbers in both groups, compared to cell frequencies already present after the second vaccination in the ChAd/BNT group. More importantly, the third vaccination efficiently restores neutralizing antibody responses against the Alpha, Beta, Gamma, and Delta variants of the virus, but neutralizing activity against the B.1.1.529 (Omicron) variant remains severely impaired. In summary, inferior SARS-CoV-2 specific immune responses following homologous ChAd/ChAd vaccination can be compensated by heterologous BNT vaccination, which might influence the choice of vaccine type for subsequent vaccination boosts.


Sujets)
COVID-19 , Anticorps neutralisants , Anticorps antiviraux , Production d'anticorps , Vaccin BNT162 , COVID-19/prévention et contrôle , Humains , SARS-CoV-2 , Vaccination , Vaccins synthétiques , Vaccins à ARNm
4.
Eur J Immunol ; 51(12): 2708-3145, 2021 12.
Article Dans Anglais | MEDLINE | ID: covidwho-1568038

Résumé

The third edition of Flow Cytometry Guidelines provides the key aspects to consider when performing flow cytometry experiments and includes comprehensive sections describing phenotypes and functional assays of all major human and murine immune cell subsets. Notably, the Guidelines contain helpful tables highlighting phenotypes and key differences between human and murine cells. Another useful feature of this edition is the flow cytometry analysis of clinical samples with examples of flow cytometry applications in the context of autoimmune diseases, cancers as well as acute and chronic infectious diseases. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid. All sections are written and peer-reviewed by leading flow cytometry experts and immunologists, making this edition an essential and state-of-the-art handbook for basic and clinical researchers.


Sujets)
Maladies auto-immunes/immunologie , Cytométrie en flux , Infections/immunologie , Tumeurs/immunologie , Animaux , Maladie chronique , Humains , Souris , Guides de bonnes pratiques cliniques comme sujet
5.
Front Immunol ; 12: 772240, 2021.
Article Dans Anglais | MEDLINE | ID: covidwho-1551510

Résumé

Antigen-specific tissue-resident memory T cells (Trms) and neutralizing IgA antibodies provide the most effective protection of the lungs from viral infections. To induce those essential components of lung immunity against SARS-CoV-2, we tested various immunization protocols involving intranasal delivery of a novel Modified Vaccinia virus Ankara (MVA)-SARS-2-spike vaccine candidate. We show that a single intranasal MVA-SARS-CoV-2-S application in mice strongly induced pulmonary spike-specific CD8+ T cells, albeit restricted production of neutralizing antibodies. In prime-boost protocols, intranasal booster vaccine delivery proved to be crucial for a massive expansion of systemic and lung tissue-resident spike-specific CD8+ T cells and the development of Th1 - but not Th2 - CD4+ T cells. Likewise, very high titers of IgG and IgA anti-spike antibodies were present in serum and broncho-alveolar lavages that possessed high virus neutralization capacities to all current SARS-CoV-2 variants of concern. Importantly, the MVA-SARS-2-spike vaccine applied in intramuscular priming and intranasal boosting treatment regimen completely protected hamsters from developing SARS-CoV-2 lung infection and pathology. Together, these results identify intramuscular priming followed by respiratory tract boosting with MVA-SARS-2-S as a promising approach for the induction of local, respiratory as well as systemic immune responses suited to protect from SARS-CoV-2 infections.


Sujets)
Anticorps antiviraux/sang , Lymphocytes T CD8+/immunologie , Vaccins contre la COVID-19/immunologie , COVID-19/prévention et contrôle , SARS-CoV-2/immunologie , Glycoprotéine de spicule des coronavirus/immunologie , Administration par voie nasale , Animaux , Anticorps neutralisants/sang , Lignée cellulaire , Chlorocebus aethiops , Cricetinae , Vecteurs génétiques , Rappel de vaccin , Immunoglobuline A/sang , Immunoglobuline G/sang , Poumon/immunologie , Mâle , Souris , Souris de lignée C57BL , Lymphocytes auxiliaires Th1/immunologie , Vaccination , Vaccins sous-unitaires/immunologie , Virus de la vaccine/immunologie , Cellules Vero , Charge virale/immunologie
6.
Nat Med ; 27(9): 1525-1529, 2021 09.
Article Dans Anglais | MEDLINE | ID: covidwho-1310811

Résumé

Currently approved viral vector-based and mRNA-based vaccine approaches against coronavirus disease 2019 (COVID-19) consider only homologous prime-boost vaccination. After reports of thromboembolic events, several European governments recommended using AstraZeneca's ChAdOx1-nCov-19 (ChAd) only in individuals older than 60 years, leaving millions of already ChAd-primed individuals with the decision to receive either a second shot of ChAd or a heterologous boost with mRNA-based vaccines. However, such combinations have not been tested so far. We used Hannover Medical School's COVID-19 Contact Study cohort of healthcare professionals to monitor ChAd-primed immune responses before and 3 weeks after booster with ChAd (n = 32) or BioNTech/Pfizer's BNT162b2 (n = 55). Although both vaccines boosted prime-induced immunity, BNT162b2 induced significantly higher frequencies of spike-specific CD4+ and CD8+ T cells and, in particular, high titers of neutralizing antibodies against the B.1.1.7, B.1.351 and P.1 variants of concern of severe acute respiratory syndrome coronavirus 2.


Sujets)
Anticorps neutralisants/sang , Anticorps antiviraux/sang , Vaccins contre la COVID-19/effets indésirables , Vaccins contre la COVID-19/immunologie , SARS-CoV-2/immunologie , Vaccin BNT162 , Numération des lymphocytes CD4 , Lymphocytes T CD4+/immunologie , Lymphocytes T CD8+/immunologie , COVID-19/immunologie , Vaccin ChAdOx1 nCoV-19 , Humains , Rappel de vaccin/méthodes , Immunogénicité des vaccins/immunologie , Glycoprotéine de spicule des coronavirus/immunologie , Vaccination
7.
EBioMedicine ; 57: 102885, 2020 Jul.
Article Dans Anglais | MEDLINE | ID: covidwho-633885

Résumé

BACKGROUND: Elucidating the role of T cell responses in COVID-19 is of utmost importance to understand the clearance of SARS-CoV-2 infection. METHODS: 30 hospitalized COVID-19 patients and 60 age- and gender-matched healthy controls (HC) participated in this study. We used two comprehensive 11-colour flow cytometric panels conforming to Good Laboratory Practice and approved for clinical diagnostics. FINDINGS: Absolute numbers of lymphocyte subsets were differentially decreased in COVID-19 patients according to clinical severity. In severe disease (SD) patients, all lymphocyte subsets were reduced, whilst in mild disease (MD) NK, NKT and γδ T cells were at the level of HC. Additionally, we provide evidence of T cell activation in MD but not SD, when compared to HC. Follow up samples revealed a marked increase in effector T cells and memory subsets in convalescing but not in non-convalescing patients. INTERPRETATION: Our data suggest that activation and expansion of innate and adaptive lymphocytes play a major role in COVID-19. Additionally, recovery is associated with formation of T cell memory as suggested by the missing formation of effector and central memory T cells in SD but not in MD. Understanding T cell-responses in the context of clinical severity might serve as foundation to overcome the lack of effective anti-viral immune response in severely affected COVID-19 patients and can offer prognostic value as biomarker for disease outcome and control. FUNDING: Funded by State of Lower Saxony grant 14-76,103-184CORONA-11/20 and German Research Foundation, Excellence Strategy - EXC2155"RESIST"-Project ID39087428, and DFG-SFB900/3-Project ID158989968, grants SFB900-B3, SFB900-B8.


Sujets)
Betacoronavirus/immunologie , Lymphocytes T CD4+/immunologie , Lymphocytes T CD8+/immunologie , Infections à coronavirus/immunologie , Activation des lymphocytes/immunologie , Pneumopathie virale/immunologie , Adulte , Sujet âgé , Sujet âgé de 80 ans ou plus , Marqueurs biologiques , Lymphocytes T CD4+/cytologie , Lymphocytes T CD8+/cytologie , COVID-19 , Femelle , Humains , Mémoire immunologique/immunologie , Numération des lymphocytes , Mâle , Adulte d'âge moyen , Pandémies , Pronostic , SARS-CoV-2 , Indice de gravité de la maladie , Jeune adulte
SÉLECTION CITATIONS
Détails de la recherche